(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(U31(tt)) → mark(0)
active(U41(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNat(x(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(x(N, 0)) → mark(U31(isNat(N)))
active(x(N, s(M))) → mark(U41(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U31(X)) → U31(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2) → mark(U11(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U31(X)) → U31(proper(X))
proper(0) → ok(0)
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(U31(tt)) → mark(0)
active(U41(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNat(x(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(x(N, 0)) → mark(U31(isNat(N)))
active(x(N, s(M))) → mark(U41(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U31(X)) → U31(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
top(ok(X)) → top(active(X))
proper(tt) → ok(tt)
x(mark(X1), X2) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
s(ok(X)) → ok(s(X))
U31(ok(X)) → ok(U31(X))
U31(mark(X)) → mark(U31(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
proper(0) → ok(0)
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
top(mark(X)) → top(proper(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
Rewrite Strategy: INNERMOST
(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
transitions:
ok0(0) → 0
active0(0) → 0
tt0() → 0
mark0(0) → 0
00() → 0
U110(0, 0) → 1
top0(0) → 2
proper0(0) → 3
x0(0, 0) → 4
and0(0, 0) → 5
isNat0(0) → 6
s0(0) → 7
U310(0) → 8
plus0(0, 0) → 9
U210(0, 0, 0) → 10
U410(0, 0, 0) → 11
U111(0, 0) → 12
ok1(12) → 1
active1(0) → 13
top1(13) → 2
tt1() → 14
ok1(14) → 3
x1(0, 0) → 15
mark1(15) → 4
and1(0, 0) → 16
mark1(16) → 5
isNat1(0) → 17
ok1(17) → 6
x1(0, 0) → 18
ok1(18) → 4
and1(0, 0) → 19
ok1(19) → 5
s1(0) → 20
ok1(20) → 7
U311(0) → 21
ok1(21) → 8
U311(0) → 22
mark1(22) → 8
U111(0, 0) → 23
mark1(23) → 1
s1(0) → 24
mark1(24) → 7
plus1(0, 0) → 25
mark1(25) → 9
U211(0, 0, 0) → 26
ok1(26) → 10
U411(0, 0, 0) → 27
mark1(27) → 11
01() → 28
ok1(28) → 3
plus1(0, 0) → 29
ok1(29) → 9
U211(0, 0, 0) → 30
mark1(30) → 10
proper1(0) → 31
top1(31) → 2
U411(0, 0, 0) → 32
ok1(32) → 11
ok1(12) → 12
ok1(12) → 23
ok1(14) → 31
mark1(15) → 15
mark1(15) → 18
mark1(16) → 16
mark1(16) → 19
ok1(17) → 17
ok1(18) → 15
ok1(18) → 18
ok1(19) → 16
ok1(19) → 19
ok1(20) → 20
ok1(20) → 24
ok1(21) → 21
ok1(21) → 22
mark1(22) → 21
mark1(22) → 22
mark1(23) → 12
mark1(23) → 23
mark1(24) → 20
mark1(24) → 24
mark1(25) → 25
mark1(25) → 29
ok1(26) → 26
ok1(26) → 30
mark1(27) → 27
mark1(27) → 32
ok1(28) → 31
ok1(29) → 25
ok1(29) → 29
mark1(30) → 26
mark1(30) → 30
ok1(32) → 27
ok1(32) → 32
active2(14) → 33
top2(33) → 2
active2(28) → 33
(4) BOUNDS(1, n^1)
(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(ok(z0), ok(z1)) → ok(U11(z0, z1))
U11(mark(z0), z1) → mark(U11(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(tt) → ok(tt)
proper(0) → ok(0)
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNat(ok(z0)) → ok(isNat(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
U31(ok(z0)) → ok(U31(z0))
U31(mark(z0)) → mark(U31(z0))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
U21(ok(z0), ok(z1), ok(z2)) → ok(U21(z0, z1, z2))
U21(mark(z0), z1, z2) → mark(U21(z0, z1, z2))
U41(mark(z0), z1, z2) → mark(U41(z0, z1, z2))
U41(ok(z0), ok(z1), ok(z2)) → ok(U41(z0, z1, z2))
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
PROPER(tt) → c4
PROPER(0) → c5
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
S tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
TOP(ok(z0)) → c2(TOP(active(z0)))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
PROPER(tt) → c4
PROPER(0) → c5
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
K tuples:none
Defined Rule Symbols:
U11, top, proper, x, and, isNat, s, U31, plus, U21, U41
Defined Pair Symbols:
U11', TOP, PROPER, X, AND, ISNAT, S, U31', PLUS, U21', U41'
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
TOP(ok(z0)) → c2(TOP(active(z0)))
PROPER(tt) → c4
PROPER(0) → c5
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(ok(z0), ok(z1)) → ok(U11(z0, z1))
U11(mark(z0), z1) → mark(U11(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(tt) → ok(tt)
proper(0) → ok(0)
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNat(ok(z0)) → ok(isNat(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
U31(ok(z0)) → ok(U31(z0))
U31(mark(z0)) → mark(U31(z0))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
U21(ok(z0), ok(z1), ok(z2)) → ok(U21(z0, z1, z2))
U21(mark(z0), z1, z2) → mark(U21(z0, z1, z2))
U41(mark(z0), z1, z2) → mark(U41(z0, z1, z2))
U41(ok(z0), ok(z1), ok(z2)) → ok(U41(z0, z1, z2))
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
S tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
TOP(mark(z0)) → c3(TOP(proper(z0)), PROPER(z0))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
K tuples:none
Defined Rule Symbols:
U11, top, proper, x, and, isNat, s, U31, plus, U21, U41
Defined Pair Symbols:
U11', TOP, X, AND, ISNAT, S, U31', PLUS, U21', U41'
Compound Symbols:
c, c1, c3, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(ok(z0), ok(z1)) → ok(U11(z0, z1))
U11(mark(z0), z1) → mark(U11(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
proper(tt) → ok(tt)
proper(0) → ok(0)
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNat(ok(z0)) → ok(isNat(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
U31(ok(z0)) → ok(U31(z0))
U31(mark(z0)) → mark(U31(z0))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
U21(ok(z0), ok(z1), ok(z2)) → ok(U21(z0, z1, z2))
U21(mark(z0), z1, z2) → mark(U21(z0, z1, z2))
U41(mark(z0), z1, z2) → mark(U41(z0, z1, z2))
U41(ok(z0), ok(z1), ok(z2)) → ok(U41(z0, z1, z2))
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
U11, top, proper, x, and, isNat, s, U31, plus, U21, U41
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(11) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
U11(ok(z0), ok(z1)) → ok(U11(z0, z1))
U11(mark(z0), z1) → mark(U11(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNat(ok(z0)) → ok(isNat(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
U31(ok(z0)) → ok(U31(z0))
U31(mark(z0)) → mark(U31(z0))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
U21(ok(z0), ok(z1), ok(z2)) → ok(U21(z0, z1, z2))
U21(mark(z0), z1, z2) → mark(U21(z0, z1, z2))
U41(mark(z0), z1, z2) → mark(U41(z0, z1, z2))
U41(ok(z0), ok(z1), ok(z2)) → ok(U41(z0, z1, z2))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
proper
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(AND(x1, x2)) = x1
POL(ISNAT(x1)) = 0
POL(PLUS(x1, x2)) = x2
POL(S(x1)) = x1
POL(TOP(x1)) = 0
POL(U11'(x1, x2)) = [2]x1
POL(U21'(x1, x2, x3)) = 0
POL(U31'(x1)) = 0
POL(U41'(x1, x2, x3)) = x1 + x2
POL(X(x1, x2)) = x1 + [2]x2
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1)) = x1
POL(c22(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [2] + x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = 0
POL(tt) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
ISNAT(ok(z0)) → c11(ISNAT(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
K tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
Defined Rule Symbols:
proper
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISNAT(ok(z0)) → c11(ISNAT(z0))
We considered the (Usable) Rules:none
And the Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(AND(x1, x2)) = 0
POL(ISNAT(x1)) = x1
POL(PLUS(x1, x2)) = [2]x2
POL(S(x1)) = 0
POL(TOP(x1)) = 0
POL(U11'(x1, x2)) = [3]x2
POL(U21'(x1, x2, x3)) = 0
POL(U31'(x1)) = 0
POL(U41'(x1, x2, x3)) = x3
POL(X(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1)) = x1
POL(c22(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
POL(tt) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
K tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
ISNAT(ok(z0)) → c11(ISNAT(z0))
Defined Rule Symbols:
proper
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c3(TOP(proper(z0)))
We considered the (Usable) Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
And the Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(AND(x1, x2)) = 0
POL(ISNAT(x1)) = 0
POL(PLUS(x1, x2)) = 0
POL(S(x1)) = 0
POL(TOP(x1)) = x1
POL(U11'(x1, x2)) = 0
POL(U21'(x1, x2, x3)) = 0
POL(U31'(x1)) = 0
POL(U41'(x1, x2, x3)) = 0
POL(X(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1)) = x1
POL(c22(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = 0
POL(proper(x1)) = 0
POL(tt) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
K tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
ISNAT(ok(z0)) → c11(ISNAT(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
Defined Rule Symbols:
proper
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
We considered the (Usable) Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
And the Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = 0
POL(PLUS(x1, x2)) = x1
POL(S(x1)) = 0
POL(TOP(x1)) = x1
POL(U11'(x1, x2)) = 0
POL(U21'(x1, x2, x3)) = 0
POL(U31'(x1)) = 0
POL(U41'(x1, x2, x3)) = 0
POL(X(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1)) = x1
POL(c22(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = [1] + x1
POL(tt) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
K tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
ISNAT(ok(z0)) → c11(ISNAT(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
Defined Rule Symbols:
proper
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(AND(x1, x2)) = 0
POL(ISNAT(x1)) = 0
POL(PLUS(x1, x2)) = 0
POL(S(x1)) = 0
POL(TOP(x1)) = 0
POL(U11'(x1, x2)) = 0
POL(U21'(x1, x2, x3)) = x1
POL(U31'(x1)) = 0
POL(U41'(x1, x2, x3)) = 0
POL(X(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1)) = x1
POL(c22(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(tt) = 0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
K tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
ISNAT(ok(z0)) → c11(ISNAT(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
Defined Rule Symbols:
proper
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
U31'(mark(z0)) → c15(U31'(z0))
We considered the (Usable) Rules:none
And the Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = 0
POL(PLUS(x1, x2)) = x1
POL(S(x1)) = 0
POL(TOP(x1)) = 0
POL(U11'(x1, x2)) = x2
POL(U21'(x1, x2, x3)) = 0
POL(U31'(x1)) = x1
POL(U41'(x1, x2, x3)) = 0
POL(X(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1)) = x1
POL(c22(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(tt) = 0
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
U31'(ok(z0)) → c14(U31'(z0))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
K tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
ISNAT(ok(z0)) → c11(ISNAT(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U31'(mark(z0)) → c15(U31'(z0))
Defined Rule Symbols:
proper
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(AND(x1, x2)) = 0
POL(ISNAT(x1)) = [2]x1
POL(PLUS(x1, x2)) = 0
POL(S(x1)) = 0
POL(TOP(x1)) = 0
POL(U11'(x1, x2)) = 0
POL(U21'(x1, x2, x3)) = x2
POL(U31'(x1)) = 0
POL(U41'(x1, x2, x3)) = [3]x2
POL(X(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1)) = x1
POL(c22(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = 0
POL(tt) = 0
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:
U31'(ok(z0)) → c14(U31'(z0))
K tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
ISNAT(ok(z0)) → c11(ISNAT(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U31'(mark(z0)) → c15(U31'(z0))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
Defined Rule Symbols:
proper
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
U31'(ok(z0)) → c14(U31'(z0))
We considered the (Usable) Rules:none
And the Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(AND(x1, x2)) = 0
POL(ISNAT(x1)) = 0
POL(PLUS(x1, x2)) = 0
POL(S(x1)) = 0
POL(TOP(x1)) = 0
POL(U11'(x1, x2)) = 0
POL(U21'(x1, x2, x3)) = 0
POL(U31'(x1)) = x1
POL(U41'(x1, x2, x3)) = 0
POL(X(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1)) = x1
POL(c22(x1)) = x1
POL(c3(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
POL(tt) = 0
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(tt) → ok(tt)
proper(0) → ok(0)
Tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
ISNAT(ok(z0)) → c11(ISNAT(z0))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
U31'(ok(z0)) → c14(U31'(z0))
U31'(mark(z0)) → c15(U31'(z0))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
TOP(mark(z0)) → c3(TOP(proper(z0)))
S tuples:none
K tuples:
U11'(ok(z0), ok(z1)) → c(U11'(z0, z1))
U11'(mark(z0), z1) → c1(U11'(z0, z1))
X(mark(z0), z1) → c6(X(z0, z1))
X(ok(z0), ok(z1)) → c7(X(z0, z1))
X(z0, mark(z1)) → c8(X(z0, z1))
AND(mark(z0), z1) → c9(AND(z0, z1))
AND(ok(z0), ok(z1)) → c10(AND(z0, z1))
S(ok(z0)) → c12(S(z0))
S(mark(z0)) → c13(S(z0))
PLUS(ok(z0), ok(z1)) → c17(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c18(PLUS(z0, z1))
U41'(mark(z0), z1, z2) → c21(U41'(z0, z1, z2))
U41'(ok(z0), ok(z1), ok(z2)) → c22(U41'(z0, z1, z2))
ISNAT(ok(z0)) → c11(ISNAT(z0))
TOP(mark(z0)) → c3(TOP(proper(z0)))
PLUS(mark(z0), z1) → c16(PLUS(z0, z1))
U21'(mark(z0), z1, z2) → c20(U21'(z0, z1, z2))
U31'(mark(z0)) → c15(U31'(z0))
U21'(ok(z0), ok(z1), ok(z2)) → c19(U21'(z0, z1, z2))
U31'(ok(z0)) → c14(U31'(z0))
Defined Rule Symbols:
proper
Defined Pair Symbols:
U11', X, AND, ISNAT, S, U31', PLUS, U21', U41', TOP
Compound Symbols:
c, c1, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c3
(29) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(30) BOUNDS(1, 1)